Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nucleosides Nucleotides Nucleic Acids ; 42(8): 586-602, 2023.
Article in English | MEDLINE | ID: covidwho-2238925

ABSTRACT

Toll-like receptors (TLRs) recognize infectious agents and play an important role in the innate immune system. Studies have suggested that TLR single nucleotide polymorphisms (SNPs) are associated with poor antiviral responses against SARS-CoV-2. Therefore, we aimed to investigate the relationship of TLR7 and TLR8 (SNPs) with COVID-19 disease prognosis. A total of 120 COVID-19 patients, 40 outpatients, 40 clinical ward patients and 40 intensive care unit (ICU) patients were included in the study. TLR7 (rs179009), TLR8-129 C/G (rs3764879) and TLR8 Met1Val (rs3764880) SNPs were genotyped using the PCR-RFLP method. In female patients, individuals carrying AG genotype and G allele for TLR8 Met1Val SNP were found at a higher frequency in patients hospitalized in the ICU than in patients followed in the clinical ward (p < 0.05). In terms of the other two SNPs, no significant difference was found between the groups in females. Furthermore, in male patients, A allele of TLR7 rs179009 SNP was at a higher frequency in patients who have at least one comorbidity than in patients who have no comorbidity (p < 0.05). Our results suggest that TLR8 Met1Val SNP is important in the COVID-19 disease severity in females. Furthermore, TLR7 rs179009 SNP is important in male patients in the presence of comorbid diseases.


Subject(s)
COVID-19 , Toll-Like Receptor 7 , Humans , Male , Female , Toll-Like Receptor 7/genetics , Genetic Predisposition to Disease , Toll-Like Receptor 8/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Polymorphism, Single Nucleotide
2.
Cells ; 11(23)2022 Nov 26.
Article in English | MEDLINE | ID: covidwho-2123530

ABSTRACT

COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease.


Subject(s)
Neutrophils , RNA, Viral , SARS-CoV-2 , Toll-Like Receptor 8 , Humans , COVID-19 , Neutrophils/metabolism , SARS-CoV-2/metabolism , Toll-Like Receptor 8/genetics , RNA, Viral/genetics
3.
BMC Infect Dis ; 22(1): 448, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1833287

ABSTRACT

BACKGROUND: The etiopathogenesis of coronavirus disease 2019 (COVID-19) stem partially from the abnormal activation of the innate and adaptive immune systems. Here in the current investigation, the mRNA expression levels of toll-like receptors (TLRs) were evaluated in the nasopharyngeal epithelial cells from COVID-19 patients. METHODS: Epithelial cells were obtained using nasopharyngeal swab samples from 90 COVID-19 patients and 50 controls. COVID-19 cases were classified into those without symptoms, with symptoms but not hospitalized, and with symptoms and hospitalized. To determine the mRNA expression levels of TLRs, first RNA was extracted and cDNA was synthesized, and finally Real-time PCR was exerted. RESULTS: It was seen that the transcript levels of TLR3, TLR7, TLR8, and TLR9 were overexpressed in the COVID-19 patients with clinical symptoms needing hospitalization as well as in those with clinical symptoms without needing for hospitalization compared to controls. Upregulation of TLRs was associated with clinical presentations of the patients. CONCLUSIONS: Modulation of TLR3, TLR7, TLR8, TLR9 in the epithelial cells of COVID-19 cases may estimate the disease severity and requirement for hospitalization.


Subject(s)
COVID-19 , Toll-Like Receptor 3 , Epithelial Cells/metabolism , Humans , Nasopharynx , RNA, Messenger/genetics , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/genetics , Toll-Like Receptor 9/genetics , Toll-Like Receptors/genetics
4.
Genes Immun ; 23(1): 51-56, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585868

ABSTRACT

Toll-like receptors (TLR) are crucial components in the initiation of innate immune responses to a variety of pathogens, triggering the production of pro-inflammatory cytokines and type I and II interferons, which are responsible for innate antiviral responses. Among the different TLRs, TLR7 recognizes several single-stranded RNA viruses including SARS-CoV-2. We and others identified rare loss-of-function variants in X-chromosomal TLR7 in young men with severe COVID-19 and with no prior history of major chronic diseases, that were associated with impaired TLR7 signaling as well as type I and II IFN responses. Here, we performed RNA sequencing to investigate transcriptome variations following imiquimod stimulation of peripheral blood mononuclear cells isolated from patients carrying previously identified hypomorphic, hypofunctional, and loss-of-function TLR7 variants. Our investigation revealed a profound impairment of the TLR7 pathway in patients carrying loss-of-function variants. Of note, a failure in IFNγ upregulation following stimulation was also observed in cells harboring the hypofunctional and hypomorphic variants. We also identified new TLR7 variants in severely affected male patients for which a functional characterization of the TLR7 pathway was performed demonstrating a decrease in mRNA levels in the IFNα, IFNγ, RSAD2, ACOD1, IFIT2, and CXCL10 genes.


Subject(s)
COVID-19 , Toll-Like Receptor 7 , Cytokines/metabolism , Down-Regulation , Humans , Leukocytes, Mononuclear/metabolism , Male , SARS-CoV-2 , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism
5.
J Innate Immun ; 13(6): 345-358, 2021.
Article in English | MEDLINE | ID: covidwho-1245277

ABSTRACT

Regulation of proinflammatory cytokine expression is critical in the face of single-stranded RNA (ssRNA) virus infections. Many viruses, including coronavirus and influenza virus, wreak havoc on the control of cytokine expression, leading to the formation of detrimental cytokine storms. Understanding the regulation and interplay between inflammatory cytokines is critical to the identification of targets involved in controlling the induction of cytokine expression. In this study, we focused on how the antiviral cytokine interleukin-27 (IL-27) regulates signal transduction downstream of Toll-like receptor 7 (TLR7) and TLR8 ligation, which recognize endosomal single-stranded RNA. Given that IL-27 alters bacterial-sensing TLR expression on myeloid cells and can inhibit replication of single-stranded RNA viruses, we investigated whether IL-27 affects expression and function of TLR7 and TLR8. Analysis of IL-27-treated THP-1 monocytic cells and THP-1-derived macrophages revealed changes in mRNA and protein expression of TLR7 and TLR8. Although treatment with IL-27 enhanced TLR7 expression, only TLR8-mediated cytokine secretion was amplified. Furthermore, we demonstrated that imiquimod, a TLR7 agonist, inhibited cytokine and chemokine production induced by a TLR8 agonist, TL8-506. Delineating the immunomodulatory role of IL-27 on TLR7 and TLR8 responses provides insight into how myeloid cell TLR-mediated responses are regulated during virus infection.


Subject(s)
Interleukin-27/immunology , Macrophages/immunology , Monocytes/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 8/immunology , Cytokines/immunology , Humans , Immunomodulation , Inflammation , RNA, Messenger/metabolism , Signal Transduction , THP-1 Cells , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism
6.
Infect Genet Evol ; 85: 104507, 2020 11.
Article in English | MEDLINE | ID: covidwho-731865

ABSTRACT

The COVID-19 pandemic highlighted healthcare disparities in multiple countries. As such morbidity and mortality vary significantly around the globe between populations and ethnic groups. Underlying medical conditions and environmental factors contribute higher incidence in some populations and a genetic predisposition may play a role for severe cases with respiratory failure. Here we investigated whether genetic variation in the key genes for viral entry to host cells-ACE2 and TMPRSS2-and sensing of viral genomic RNAs (i.e., TLR3/7/8) could explain the variation in incidence across diverse ethnic groups. Overall, these genes are under strong selection pressure and have very few nonsynonymous variants in all populations. Genetic determinant for the binding affinity between SARS-CoV-2 and ACE2 does not show significant difference between populations. Non-genetic factors are likely to contribute differential population characteristics affected by COVID-19. Nonetheless, a systematic mutagenesis study on the receptor binding domain of ACE2 is required to understand the difference in host-viral interaction across populations.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Toll-Like Receptors/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Humans , Mutagenesis, Site-Directed , Protein Binding , Protein Domains , Selection, Genetic , Serine Endopeptidases/metabolism , Toll-Like Receptor 3/chemistry , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/chemistry , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/chemistry , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism , Toll-Like Receptors/chemistry , Toll-Like Receptors/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL